A Christoffel function weighted least squares algorithm for collocation approximations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Christoffel function weighted least squares algorithm for collocation approximations

We propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo appr...

متن کامل

Adaptive Weighted Least Squares Algorithm for Volterra Signal Modeling

This paper presents a novel algorithm for least squares (LS) estimation of both stationary and nonstationary signals which arise from Volterra models. The algorithm concerns the recursive implementations of the method of LS which usually have a weighting factor in the cost function. This weighting factor enables nonstationary signal models to be tracked. In particular, the behavior of the weigh...

متن کامل

Resurrecting Weighted Least Squares

This paper shows how asymptotically valid inference in regression models based on the weighted least squares (WLS) estimator can be obtained even when the model for reweighting the data is misspecified. Like the ordinary least squares estimator, the WLS estimator can be accompanied by heterokedasticty-consistent (HC) standard errors without knowledge of the functional form of conditional hetero...

متن کامل

A least-squares preconditioner for radial basis functions collocation methods

Although meshless radial basis function (RBF) methods applied to partial differential equations (PDEs) are not only simple to implement and enjoy exponential convergence rates as compared to standard mesh-based schemes, the system of equations required to find the expansion coefficients are typically badly conditioned and expensive using the global Gaussian elimination (G-GE) method requiring O...

متن کامل

Weighted Least Squares and Adaptive Least Squares: Further Empirical Evidence

This paper compares ordinary least squares (OLS), weighted least squares (WLS), and adaptive least squares (ALS) by means of a Monte Carlo study and an application to two empirical data sets. Overall, ALS emerges as the winner: It achieves most or even all of the efficiency gains of WLS over OLS when WLS outperforms OLS, but it only has very limited downside risk compared to OLS when OLS outper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2016

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3192